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a b s t r a c t

With the advent of state-of-the-art computers and their rapid availability, the time is ripe
for the development of efficient uncertainty quantification (UQ) methods to reduce the
complexity of numerical models used to simulate complicated systems with incomplete
knowledge and data. The spectral stochastic finite element method (SSFEM) which is one
of the widely used UQ methods, regards uncertainty as generating a new dimension and
the solution as dependent on this dimension. A convergent expansion along the new
dimension is then sought in terms of the polynomial chaos system, and the coefficients
in this representation are determined through a Galerkin approach. This approach provides
an accurate representation even when only a small number of terms are used in the spec-
tral expansion; consequently, saving in computational resource can be realized compared
to the Monte Carlo (MC) scheme. Recent development of a finite difference lattice Boltz-
mann method (FDLBM) that provides a convenient algorithm for setting the boundary con-
dition allows the flow of Newtonian and non-Newtonian fluids, with and without external
body forces to be simulated with ease. Also, the inherent compressibility effect in the con-
ventional lattice Boltzmann method, which might produce significant errors in some
incompressible flow simulations, is eliminated. As such, the FDLBM together with an effi-
cient UQ method can be used to treat incompressible flows with built in uncertainty, such
as blood flow in stenosed arteries. The objective of this paper is to develop a stochastic
numerical solver for steady incompressible viscous flows by combining the FDLBM with
a SSFEM. Validation against MC solutions of channel/Couette, driven cavity, and sudden
expansion flows are carried out.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The Bhatnagar–Gross–Krook (BGK)-type modeled Boltzmann equation [1] has long played an important role in the devel-
opment of kinetic-theory based numerical schemes. Through the use of the Chapman–Enskog or multi-scale expansion in
terms of the Knudsen number, both the Euler and the Navier–Stokes (NS) equations can be derived [2]. The procedure leads
to the development of numerical schemes along this direction for different types of fluid flows. Lattice Boltzmann method
(LBM) is the most notable and widely used among these numerical schemes, and it has developed into an alternative and
promising avenue for modeling fluid physics and simulating fluid flows [3]. The equation is hyperbolic and can be solved
locally, explicitly, and efficiently on parallel computers [4,5]. Its simplicity renders the equation easy to program and to
. All rights reserved.
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incorporate the modeling of additional physical phenomena that closely mimic real physics. LBM can be considered as a par-
ticular discretization of the discrete Boltzmann equation [6,7]; therefore, the discrete Boltzmann equation can be solved by
any finite difference scheme. This leads to the development of a finite difference lattice Boltzmann method (FDLBM) [7–9]
that is different from the conventional LBM. Consequently, it is possible to remedy the constraint of lattice symmetry and
numerical instability of the conventional LBM [7]. Recently, Fu et al. [9] have developed an FDLBM that provides a convenient
algorithm for setting the boundary condition by using a splitting approach to solve the discrete Boltzmann equation. Their
FDLBM is capable of simulating flows of Newtonian and non-Newtonian fluids, with or without external body forces. Also,
the inherent compressibility effect of the conventional LBM, which might produce significant errors in some incompressible
flow simulations, is eliminated. Through this numerical approach, a wide variety of governing equations can be similarly
treated. Although the work of Fu et al. [9] was originally aimed at the simulation of micro-channel flow of power-law fluids,
its application is quite broad; extension to rheological flows with built in uncertainty is a possibility.

A numerical method that can handle uncertainty is essential to providing a realistic picture for complex physical systems,
because various uncertainties, such as lack of knowledge of system forcing, initial and boundary conditions, parametric
uncertainties in the physical model, are unavoidable in these systems. Problems involving uncertainty are typically solved
by employing Monte Carlo (MC) numerical schemes [10] which basically perform deterministic simulations with randomly
input conditions, and then conduct a statistical analysis on the simulation results to extract relevant statistical properties to
account for the uncertainty. The validity and extent of the calculated statistical properties depend on how large a population
of simulations has been conducted. This approach is robust and is able to deal with complex situations; however, it is very
CPU cost and storage demanding, so it is restricted to problems involving a small number of uncertain parameters and/or
degrees of freedom only. Also, this approach does not readily provide information on the sensitivity of model outputs to spe-
cific parametric uncertainties.

Besides the MC schemes, among the available UQ methods used to simulate complicated systems with incomplete knowl-
edge and data, the polynomial chaos (PC) based methods [11–14] are receiving growing interest because they yield accurate
predictions of the uncertainty at a small fraction of the cost of a MC approach, and they provide a rich uncertainty charac-
terization. The PC based methods for UQ have been regularly improved and applied to problems with increasing complexity
since the early work of Ghanem and Spanos [14–19]; an example is their spectral stochastic finite element method (SSFEM)
[14]. The essential concept in the SSFEM is to regard uncertainty as generating a new dimension and the solution as being
dependent on this dimension. A convergent expansion along the new dimension is then sought in terms of the polynomial
chaos system, and the coefficients in this representation are determined through a Galerkin approach. Following the idea of
SSFEM, Le Maître et al. [16] developed a stochastic projection method (SPM) focusing on fluid flow problems. The method
combines a Galerkin procedure for the determination of PC coefficients with a projection method for solving the incompress-
ible Navier–Stokes (NS) equations coupled by a temperature equation. They found that only a small number of terms in the
spectral expansion are required to ensure accurate representation. Also, fast convergence of the spectral representation lends
credence to the potential of this approach to becoming an efficient stochastic solver. Their SPM has been generalized to ac-
count for stochastic input generated by a random process [17].

Since the FDLBM is much more efficient to solve than the finite difference solution of the NS equations, it is desirable to
develop a numerical method that contains both the advantages of the FDLBM and the SSFEM or the SPM. Therefore, the
objective of this paper is to develop a stochastic numerical solver for steady incompressible NS equations by combining
the FDLBM with SSFEM or SPM. The numerical procedure follows that for the FDLBM outlined in [9] and the dependent vari-
ables are projected to the Homogeneous Chaos (HC) by the expansion of PC. All advantages of the FDLBM are retained. This
new numerical technique is designated SFDLBM for short. Due to the simplicity of the FDLBM, the SFDLBM could offer an
attractive alternative to the stochastic NS equation method proposed by Le Maître et al. [16,17]. The accuracy of the SFDLBM
depends on the order of the HC used. The stochastic scheme reverts to its deterministic counterpart at zero-order of the HC.

One justification for the development of the SFDLBM is its application to simulate blood flow in micro and stenotic arter-
ies. Blood flow has three distinct characteristics. The first is the rheological properties of blood; changes of blood rheology
have been reported in several human cardiovascular diseases [20–23], but the exact mechanism of rheological changes is
still not clear. The second is the pulsatile nature of the flow due to pulsating pressure, while the third is the changing bound-
ary geometry due to plaque and cholesterol buildup inside arteries [24]. If this type of complicated non-Newtonian fluid flow
were to be simulated successfully, a numerical solver that possesses the unique property of being able to simulate non-New-
tonian fluids in a pulsating environment with complex boundary geometry is required. In view of this, the use of a determin-
istic approach to simulate blood flow might not be too appropriate. One suggestion is to adopt the MC approach [10];
however, this is limited by the size of the population that can be considered and will entail a lot more computer resource
as will be shown later. Another alternative is to utilize the stochastic approach of Le Maître et al. [16,17]. This approach re-
quires modifying the NS equations so that they can be used to treat non-Newtonian fluid flows. Due to complex geometry
change as a result of plaque/cholesterol buildup, solving the blood flow problem using NS equations will either require a grid
generation technique [25] or the implementation of the immersed boundary (IB) method [26], which is capable of handling
complex boundary geometry. A third approach is the adoption of FDLBM, because it is simple and computationally efficient
[4,5]. Even though this approach has been shown to be capable of handling non-Newtonian fluid flows having a power law
viscosity in micro-channel flows [9], it still requires extension to rheological flows, where the stress strain relation is most
likely nonlinear. On the other hand, the IB method [26] can be implemented into the FDLBM to give a FDLBM/IB scheme to
treat flow in constricted tubes; this work is currently being attempted. If the SSFEM [14] or SPM [16] can be readily imple-
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mented into FDLBM to yield a stochastic FDLBM (or SFDLBM) then a viable building block to construct a SFDLBM with IB
capability is readily available. This paper attempts to construct such a SFDLBM in order to pave the way to the eventual
development of a SFDLBM with IB capability (i.e. a SFDLBM/IB method). Extension to rheological fluid flows can then be car-
ried out by further modifying the approach of [9] to treat fluid stresses with nonlinear strain rate behavior.

Another justification for the current work is the extension of the proposed SFDLBM to treat aerodynamic flows around
randomly oscillating airfoils/air wings or other streamline/bluff bodies, and turbulent flows. This application also requires
the implementation of the IB method into the FDLBM; such an investigation is presently being carried out. Therefore, a read-
ily available SFDLBM could facilitate the development of this application also. Direct numerical simulation of turbulent flows
is currently limited by computer capacity, thus putting an upper limit on the highest Reynolds number (Re) flow that can be
simulated. The FDLBM, like the NS equations, is valid for all Re. Once a SFDLBM is available, it can be used to treat flows
where the velocity and pressure fields are random processes. In other words, the formulation could be extended to simulate
turbulent flows. This eventual objective needs systematic development; the present attempt is a first step towards this even-
tual goal. If the SFDLBM were to be used to achieve this objective, its ability to treat stochastic problems involving a random
process has to be demonstrated. Therefore, it is important to show in the present study that any viable SFDLBM can handle
uncertainty that is represented by a random process.

The formulation of the SFDLBM is presented in the next section. It is followed by validating the scheme against a number
of numerical examples. First, the SFDLBM is validated against flow with only one random excitation; a channel/Couette flow
and a driven cavity flow with viscosity as the only randomness are attempted. Next, the method is extended to flow cases
with more than one source of random excitations. Simulations of a driven cavity flow and a sudden expansion flow are car-
ried out to demonstrate this capability of the SFDLBM. Finally, the SFDLBM is used to solve flow problems involving a random
process. For all cases attempted, SFDLBM results are compared with those obtained from the MC numerical scheme. Since
the MC simulations are carried out under the same numerical and physical conditions, the time required for the SFDLBM
and MC calculations is compared to determine the relative merit of these numerical approaches.
2. Formulation of the stochastic FDLBM (SFDLBM)

In this section, the governing equations for a 2-D steady incompressible flow are first given; it is then followed by a brief
discussion of the FDLBM and the implementation of the SSFEM/SPM into the FDLBM. Finally, the numerical solution of the
equations governing the SFDLBM is described.

2.1. The governing equations

As a first attempt, the focus of this paper is restricted to the solution of the two-dimensional (2-D) isothermal, incom-
pressible NS equations, which can be written in conservation form as
@u
@x
þ @v
@y
¼ 0; ð1Þ

@qu
@t
þ @qu2 þ p� sxx

@x
þ @uv � sxy

@y
¼ 0; ð2aÞ

@qv
@t
þ @qvu� sxy

@x
þ @qv2 þ p� syy

@y
¼ 0: ð2bÞ
For Newtonian fluid, the normal and shear stresses are given by
sxx ¼ 2l @u
@x
; syy ¼ 2l @v

@y
; sxy ¼ l @u

@y
þ @v
@x

� �
; ð3Þ
where l, q, (u, v), p and sxx, syy, sxy, are the viscosity coefficient, the density, the x- and y-direction velocity components, the
pressure, and the viscous stress components of the flow, respectively. All variables in these equations are dimensionless, and
the characteristic scales used for length, velocity, time, pressure, density, and viscosity are: L, U1, L/U1, q1U2

1, q1, and l1,
respectively. Recently, Fu et al. [9] proposed a FDLBM for steady incompressible NS equations. The scheme is originally aimed
at micro-channel flows, but it is in fact applicable to a wide variety of incompressible flows. It solves the BGK-type modeled
Boltzmann equation that recovers the incompressible NS equations with a convenient way to apply the boundary conditions
for the governing equations, while, at the same time, retains all the advantages of the LBM.

2.2. The stochastic FDLBM (SFDLBM)

It was shown in [9] that solving the discrete particle distribution function fa in
@fa
@t
þ na � r~xfa ¼ �

1
e/
ðfa � f eq

a Þ; ð4Þ
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with an appropriate discrete particle equilibrium distribution function f eq
a is equivalent to solving the incompressible NS

equations, Eq. (1–2). In Eq. (4), the symbols e and / are a small parameter and the relaxation time, respectively, and
e/ = Dt is chosen. A specific D2Q9 lattice model is used and the lattice velocities na are defined as
n0 ¼ ð0;0Þ; a ¼ 0; ð5aÞ
na ¼ cðcos½pða� 1Þ=4�; sin½pða� 1Þ=4�Þ; a ¼ 1;3;5;7; ð5bÞ
na ¼

ffiffiffi
2
p

cðcos½pða� 1Þ=4�; sin½pða� 1Þ=4�Þ; a ¼ 2;4;6;8; ð5cÞ
where c is a scaling parameter to be defined later. Details of the numerical procedure of the FDLBM scheme can be found in
[9]. In this paper, the FDLBM is built into a stochastic numerical solver through application of either the SSFEM [14] or the
SPM [16], and using the same procedure as that given in [9]. The SFDLBM scheme thus developed is primarily for steady flow,
but as stated in [9], it can be extended to a time-accurate scheme by treating the temporal term as a pseudo-time term,
which vanishes at convergence at each physical time step.

It is assumed that the source of random excitation can be written as
hi ¼ hi0 þ fihi1; ð6Þ
where hi is any uncertain physical property or parameter such that its measured statistical data is a normal distribution with
mean value hi0 and standard deviation hi1, and fi are uncorrelated Gaussian variables having zero expectation and unit var-
iance. Theoretically, there is no restriction on the number of random excitation sources, and it is only limited by the com-
putational resource available for a practical calculation. The source of random excitation can be an initial condition, a
boundary condition, fluid properties such as viscosity coefficient, and flow properties such as driven velocity, volumetric
inflow.

The expectation of a quantity g, hgi, can be defined as
hgi ¼ 1

ð2pÞD=2

Z 1

�1
gðfiÞ exp � jfj

2

2

 !Y
i

dfi: ð7Þ
Here, it should be pointed out that f is a vector with dimension D and fi is its index form with index i running from 0 to D � 1.
However, it could also be a scalar as later analysis will demonstrate. By this definition of expectation, it can be easily verified
that hfii ¼ 0; hf2

i i ¼ 1; hhii ¼ hi0 and h (h � hi0)2i = h2
i1. Next, the dependent variables are projected to HC [11,14] by using the

PC and expanding them up to M,
h ¼
XM

i¼0

hiWiðfÞ; ð8Þ
where h stands for the discrete distribution function fa, the discrete equilibrium distribution f eq
a , the velocity (u, v), the pres-

sure p and the viscous stress tensor sij. The final representation of the flow problem can be understood by its means (expec-
tation) as hhi = h0 and its variance as h(h � h0)2i. Detailed expressions for the polynomial chaoses Wk can be found in [14]. The
1-D and 2-D polynomial chaoses and their variances are quoted in Tables A.1 and A.2 in Appendix A for easy reference.

Multiplying Eq. (4) with respect to Wk and taking expectation using Eq. (7), the following is obtained,
@fak

@t
þ na � rfak ¼ �

1
e/
ðfak�f eq

ak
Þ; ð9Þ
where f eq
ak has also been projected to HC with every term defined as
f eq
ak ¼ Aak þ naxAxak þ nayAyak þ n2

axBxxak þ n2
ayByyak þ naxnayBxyak: ð10Þ
The constraints for f eq
ak are
X8

a¼0

f eq
ak ¼ qk; or

X8

a¼0

f eq
a0 ¼ q;

X8

a¼0

f eq
ai hW

2
i i ¼ 0; i P 1; ð11aÞ
X8

a¼0

f eq
ak nax ¼ quk;

X8

a¼0

f eq
ak nay ¼ qvk; ð11b; cÞ
X8

a¼0

f eq
ak n2

ax ¼ q
X

i;j

uiuj
hWiWjWki
hW2

ki
þ pk � sxxk; ð11dÞ

X8

a¼0

f eq
ak n2

ay ¼ q
X

i;j

v iv j
hWiWjWki
hW2

ki
þ pk � syyk; ð11eÞ

X8

a¼0

f eq
ak naxnay ¼ q

X
i;j

uiv j
WiWjWk

� �
W2

k

D E � sxyk: ð11fÞ
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It should be noted that a deterministic constant density q is assumed, i.e. q0 = q, qk = 0 for k P 1. Solving Eqs. (11a–f), the
coefficients in Eq. (10) are found to be
A0k ¼ qk �
2pk

c2 �
q
c2

XM

i;j¼0

uiuj þ v iv j
� � hWiWjWki

hW2
ki

þ sxxk þ syyk

c2 ; A1k ¼ A2k ¼ 0; ð12aÞ
Ax1k ¼
quk

2c2 ;Ax2k ¼ 0 ;Ay1k ¼
qvk

2c2 ; Ay2k ¼ 0; ð12b; cÞ
Bxx1k ¼
1

2c4 pk þ q
XM

i;j¼0

uiuj
hWiWjWki
hW2

ki
� sxxk

 !
; Bxx2k ¼ 0; ð12dÞ

Byy1k ¼
1

2c4 pk þ q
XM

i;j¼0

v iv j
hWiWjWki
hW2

ki
� syyk

 !
; Byy2k ¼ 0; ð12eÞ

Bxy1k ¼ 0; Bxy2k ¼
1

4c4 q
XM

i;j¼0

uiv j
hWiWjWki
hW2

ki
� sxyk

 !
; ð12fÞ
where coefficients with the same magnitude of na are assumed equal; details of the solution procedure are given in [9].
Solving Eq. (9) and using the definitions given below,
uk ¼
1
q
X8

a¼0

faknax; ;vk ¼
1
q
X8

a¼0

faknay; ð13a;bÞ

pk ¼
X8

a¼0

fak
1
2

n2
ax þ n2

ay

	 

� 1

2
q
XM

i;j¼0

ðuiuj þ v iv jÞ
hWiWjWki

W2
k

D E
2
4

3
5þ sxxk þ syyk

2
; ð13cÞ
the incompressible NS equations with primitive variables (u, v, p) projected to HC are obtained.

2.3. Numerical procedure for the SFDLBM

Details of numerically solving the FDLBM are given in [9]; here only the numerical procedure used to solve the SFDLBM
equations is summarized below.

(i) With the initial condition for velocity and pressure given, they are expanded in terms of the PC according to Eq. (8).
(ii) Use Eq. (10) to determine f eq

ak , and use it as an initial condition to solve Eq. (9).
(iii) Solve the following equation for an intermediate distribution function f I

ak using any numerical scheme (this is the free
streaming step),
@fak

@t
þ na � rfak ¼ 0: ð14Þ
(iv) Use f I
ak and Eq. (13a–c) to find the intermediate macroscopic quantities uI

k;v I
k; p

I
k

� �
and then set the boundary

condition.
(v) Use Eq. (10) to find the intermediate equilibrium distribution function f I;eq

ak . The intermediate equilibrium distribution
function and the intermediate macroscopic quantities are in fact the evoluted values [9] (this is the collision step),
fakj~x;tþDt ¼ f I;eq
ak ; ð15aÞ

ðuk;vk; pkÞj~x;tþDt ¼ ðuI
k;v

I
k;p

I
kÞ: ð15bÞ
(vi) Repeat steps 3–5 until a steady state (conservation of mass) has been reached.

All steps in the numerical procedure are essentially the same as in the deterministic case [9] except that a series of expan-
sion is solved and the system is enlarged by M times. When M = 1, or the standard deviation of the uncertain physical prop-
erties becomes zero (i.e. hi1 = 0), the SFDLBM reverts back to the deterministic case. After a projection to HC, Eq. (9), which is
the main equation to be solved, is in a form essentially similar to Eq. (4). Also, the equations in the set are decoupled and they
can be readily adapted to parallel computation. Hence, all the advantages of the FDLBM, e.g. local, explicit, and efficient for
parallel computations, are retained.

3. Validation case I – only one random excitation

In order to illustrate the validity and extent of the general procedure outlined above, it would be prudent to first consider
a flow with one source of random excitation. However, the relevant choice of this source needs elaboration. Blood plasma is a
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non-Newtonian fluid. Its viscosity is affected by a number of factors; chief among them is the macromolecular component
hematocrit (Hct). In addition, it is also influenced by the pressure, velocity, and the local shear rate of the flow [20–22]. Cho-
lesterol and/or plaque buildup inside arteries changes the geometry of the blood vessel and in turn the pressure, velocity, and
the local shear rate [23]. If the SFDLBM were to be applicable to blood flow problems, it should be able to replicate the var-
iation of l in real blood flow through arteries, whether micro or stenosed arteries. This means that the effect of l variation on
the flow inside blood vessels has to be reproduced correctly by the SFDLBM. Viscosity variations resulting from changes in
Hct, in velocity, in pressure and in shear rate could be random in nature. In view of this, the variation of l is a likely source of
randomness to be examined first. It should be noted that Le Maître et al. [16] have also assumed l as a source of randomness.

Blood viscosity is made up of two parts; one is due to the liquid-content and the other is due to the Hct content [20–22].
The viscosity of the liquid-content part remains relatively constant even if there are changes in shear rate, velocity and pres-
sure. However, the viscosity of the Hct-content part is affected by these changes. This means that l, to the lowest approx-
imation, can be represented by Eq. (6). In a system where viscosity is the only source of randomness, f = f0 is a scalar (i.e.
D = 1); consequently, Eq. (6) can be re-written as
l ¼ l0 þ f0l1; ð16Þ
(i.e., setting h0 = l in Eq. (6),) where f0 is a Gaussian random variable with zero mean and unit variance. It should be noted
that with the use of a Gaussian noise in the viscosity, zero or even negative values are, in principle, possible. In order to avoid
this unphysical situation, the standard deviation in viscosity must be substantially smaller than the mean. In more general
situations, a non-Gaussian distribution may be needed to ensure that zero or negative viscosities have negligible likelihood
[16]. The appropriateness of the chosen values of the standard deviations and means in all cases of this paper is supported by
the MC calculations. The expansion coefficients of the viscous stresses in Eqs. (12–13) are
sxxk ¼ 2l0
@uk

@x
þ 2l1

XM

j¼0

@uj

@x
hf0WjWki

W2
k

D E ; ð17aÞ

syyk ¼ 2l0
@vk

@x
þ 2l1

XM

j¼0

@v j

@x
hf0WjWki
hW2

ki
; ð17bÞ

sxyk ¼ l0
@uk

@y
þ @vk

@x

� �
þ l1

XM

j¼0

@uj

@y
þ @v j

@x

� �
hf0WjWki
hW2

ki
: ð17cÞ
Two numerical examples, namely a channel flow and a cavity driven flow, are carried out to illustrate the viability and po-
tential of the SFDLBM.

3.1. Stochastic channel/Couette flow

In order to verify the SFDLBM scheme, a channel/Couette flow, where the two parallel plates are h apart [16], is tested
first. Fig. 1 shows the schematic diagram of the flow. The lower plate is assumed stationary. The computational domain is
0 6 (x,y) 6 1 (i.e. h = 1). For a Couette flow, there is no inflow; here, a deterministic velocity profile is specified as the inflow
(at x = 0).
u0 ¼ yU=hþ uref yðh� yÞ; ui ¼ 0 i ¼ 1; . . . ;M
v i ¼ 0; i ¼ 0; . . . ;M:

ð18Þ
A no-slip boundary condition (deterministic) is specified at the channel walls (at y = 0 and h), i.e.
ui ¼ 0; v i ¼ 0; i ¼ 0; . . . ;M: ð19Þ
For the outflow boundary (at x = 1),
@ui

@x
¼ 0;

@v i

@x
¼ 0; i ¼ 0; . . . ;M: ð20Þ
Pressures at all boundaries are found by solving Eq. (2).
y 

U 

x

Fig. 1. Schematic diagram of the channel/Couette flow.
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The above boundary settings ensure that after fully-developed flow has been achieved, v(x,y) = 0 everywhere, while
u = u(y) and p = p(x); hence, a channel/Couette flow has been established. Therefore, the pressure gradient is constant and
the result is given by
@p
@x
¼ �2luref : ð21aÞ
It can be seen that uncertainty in the viscosity affects the pressure gradient only. Setting uref = 0.5, l0 = 0.1, l1 = 0.02, Eqs.
(16) and (21a) together lead to
@p0

@x
W0 þ

@p1

@x
W1 ¼ �2lref ðl0 þ fl1Þ; ð21bÞ
and the pressure gradients for p0 and p1 are given by
@p0

@x
¼ �0:1;

@p1

@x
¼ �0:02: ð21cÞ
In the calculations, the numerical and physical parameters are specified as Dx = 0.01, Dt = 0.0001, M = 2, U = 0, 1 and 2. For
this test case, the free streaming step, i.e. Eq. (14), is solved using the same LBM discretization scheme as detailed in [3,6,9].
In finite difference form, it can be written as
fakð~xþ naDt; t þ DtÞ ¼ f eq
ak ð~x; tÞ: ð22Þ
Hence, c = Dx/Dt = 100. Fig. 2 shows the pressure profiles along the centerline (at y = h/2) of the channel in the x-direction.
Only the case U = 1 is shown because the results of U = 0 and 2 are exactly the same. They are in excellent agreement with the
analytical results given in Eq. (21c). This shows that the pressure gradients are calculated correctly by the SFDLBM.

3.2. Driven cavity flow with Gaussian viscosity randomness

A laminar incompressible flow in a square cavity whose top wall moves with a uniform velocity in its own plane is a typ-
ical example of a steady separated flow (Fig. 3). In spite of the singularities at two of its upper corner, driven cavity flow has
served repeatedly as a model problem for testing and evaluating numerical techniques [27]. The validity and extent of the
FDLBM in resolving such a problem has been demonstrated in [9]. It would be interesting to examine the effect of an uncer-
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Fig. 3. Schematic diagram of the driven cavity flow.
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tain viscosity on the velocity field. In order to verify the SFDLBM, the result thus obtained is compared with those deduced
from the MC scheme. In the MC calculation, a large number (1000) of viscosity coefficients are generated randomly (in
Gaussian). Then, the same number of cases of driven cavity flows is calculated deterministically. For a more fitting compar-
ison, the FDLBM given in [9] is used to carry out every deterministic simulation. Also, the numerical and physical parameters
of the MC simulations are set identical to those used in SFDLBM simulations.

The computational domain is defined by 0 6 (x, y) 6 1. At the upper plate, the boundary condition is specified as
Fig. 4.
2, 3, 4,
u0 ¼ U; ui ¼ 0; i ¼ 1; . . . ;M;

v i ¼ 0; i ¼ 0; . . . ;M
ð23Þ
while a no-slip condition as stipulated in Eq. (19) is invoked for the other three walls. Again, the pressures at all boundaries
are calculated according to Eq. (2). The numerical and physical parameters specified are: Dx = 0.02, Dt = 0.0001, l0 = 0.01,
l1 = 0.0025, U = 1. In this case, the free streaming step, Eq. (14), is solved using the Lax–Wendroff scheme [28]. The scaling
parameter in Eqs. (5a–c) is chosen according to,
c ¼ Kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max
ðx;y;kÞ

X
i;j

uiuj þ v iv j
� � hWiWjWki

hW2
ki

þ 2pk � sxxk � syyk

q

( )vuut ; ð24Þ
where Kc is a numerical parameter which needs to be determined case by case. For most cases and in this particular example,
stable and correct result is obtained by choosing Kc = 1. This choice of c is not unique and can be deduced from Eq. (13c), or
1
2
q
X

i;j

ðuiuj þ v iv jÞ
hWiWjWki
hW2

ki

" #
þ pk �

sxxk þ syyk

2
¼

P8
a¼0

fakjnaj2

2
6 q

max
a

naj j2

2
: ð25Þ
The inequality can be ensured by choosing a large enough Kc. Numerical experiment shows that the scheme will become
unstable if the choice of Kc is too small; however, it affects the convergence and accuracy if Kc is too large.

The u and v velocity plots along the center of the axes are shown in Figs. 4 and 5, respectively. Symbol ‘o’ is the deter-
ministic result from Ghia et al. [27]. The solid line is the result of the deterministic solution by FDLBM, while symbols ‘+’,
‘�’, ‘*’, ‘�’ are the SFDLBM results with the order of the HC given by Mp = 1, 2, 3, 4, respectively. In fact, when M = Mp = 1
or l1 = 0, the SFDLBM reverts to its deterministic counterpart. It should be noted that the order of the HC, Mp, is not the same
as the number of terms M of the PC. For example, in 2-D PC (Table A.2 in Appendix A), when the index j is started from zero,
for Mp = 4, M is 14. But in the 1-D case (D = 1), they are the same. Also, it should be noted that the solution after projected
onto the HC is dependent on f0, i.e., p = p(x, y, f0), u = u(x, y, f0), and v = v(x,y, f0). The stochastic results plotted in Figs. 4 and 5
represent the values of the velocity component, defined by putting f0 = 0, which are not necessarily the same as the mean
values (by taking expectation of Eq. (7)). As expected, the stochastic results obtained by setting f0 = 0 converge to the deter-
ministic values (at mean viscosity) with increasing Mp. The figures show that all results are in agreement with those given by
Ghia et al. [27] and those obtained deterministically, and this provides a verification of the SFDLBM code.

For quantitative comparison, Table 1 shows the maximum error norm between the deterministic results and the stochas-
tic results with f0 = 0 (the first column), the maximum norm between the deterministic results and the mean (expectation)
values deduced from SFDLBM (the second column) and the maximum variance (the third column). Since the Lax–Wendroff
scheme is second order accurate, the numerical error of the method is estimated to be of O(Dt, Dx2 � 4e�4). The maximum
error norms between the deterministic results and the stochastic results with f0 = 0 (the first column in Table 1) shows a
general trend of approaching to the same order as the estimated numerical error as Mp increases and better values are
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respectively; ‘o’, Ghia et al. [27] result.



Table 1
The maximum norm between the deterministic results and the stochastic results. The subscript ‘s’ is used to denote the stochastic results, and the subscript ‘d’
the deterministic results.

maxyjusðf0 ¼ 0Þ � ud jx¼0:5 maxyjhusi � udjx¼0:5 maxyjvarðusÞjx¼0:5

Mp = 1 7.5102e�3 7.5102e�3 8.5874e�4
Mp = 2 2.0833e�4 7.5680e�3 1.0963e�3
Mp = 3 1.3844e�3 7.3939e�3 1.0549e�3
Mp = 4 4.4431e�4 7.3666e�3 1.0532e�3
Mp = 5 7.6337e�4 7.3785e�3 1.0613e�3
Mp = 6 3.7468e�4 6.8305e�3 9.8740e�4

maxxjvsðf0 ¼ 0Þ � vd jy¼0:5 maxxjhvsi � vd jy¼0:5 maxx jvarðvsÞjy¼0:5

Mp= 1 7.4152e�3 7.4152e�3 6.3321e�4
Mp = 2 1.3751e�4 7.9598e�3 9.4365e�4
Mp = 3 1.0689e�3 7.8569e�3 9.6521e�4
Mp = 4 3.3690e�4 7.7230e�3 9.3652e�4
Mp = 5 9.4099e�4 7.6890e�3 9.2024e�4
Mp = 6 4.8674e�4 6.2518e�3 8.2190e�4
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Fig. 5. Vertical velocity, v, of driven cavity flow along x at y = 0.5: ‘—’, deterministic result; ‘+’, ‘�’, ‘*’, ‘�’ are SFDLBM results by putting f0 = 0 with Mp = 1, 2, 3,
4, respectively; ‘o’, Ghia et al. [27] result.
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obtained when the HC is of even order. Also, it is observed that, increasing the order of HC only has a weak effect on the
expected velocity field (the second column of Table 1). In this problem, the source of randomness is the viscosity which
has a variance of l2

1 ¼ 6:25e� 6, the calculations (the third column of Table 1) show that the resulting variance in the
velocity is much larger than that of the source.
Table 2
Error norms of the driven cavity flow with viscosity as the only randomness.

Max-norm 2-norm 1-norm

us � uMC

Deterministic 0.8647773 0.0609374 0.0298494
Mp = 1 0.1594504 0.0053829 0.0023014
Mp = 2 0.1336953 0.0024673 9.2606e�4
Mp = 3 0.0908352 0.0013015 4.4028e�4
Mp = 4 0.0390914 7.3827e�4 2.6773e�4

vs � vMC

Deterministic 0.5218596 0.0424875 0.0233721
Mp = 1 0.1536490 0.0040369 0.0015446
Mp = 2 0.1137691 0.0019872 7.3293e�4
Mp = 3 0.0643528 9.9191e�4 3.5903e�4
Mp = 4 0.0261239 5.5758e�4 2.0870e�4

ps � pMC

Deterministic 2.3019389 0.0401191 0.0162286
Mp = 1 0.0604677 0.0016002 7.9883e�4
Mp = 2 0.0469459 8.1678e�4 4.5270e�4
Mp = 3 0.0251763 5.4927e�4 3.6818e�4
Mp = 4 0.0136618 4.9142e�4 3.5326e�4
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The results calculated by the SFDLBM are also compared with those derived from the MC scheme. An error analysis is
reported in Table 2. In this paper, all error analyses are focused on the spectral stochastic method itself, i.e. the order of
the HC, and not on the grid size. This is because all examples chosen in the current study have been investigated in [9];
hence, the grid chosen for the FDLBM simulation is considered appropriate for these examples. Maximum norm (max-norm)
and q-norm are calculated by differencing each set of MC results, uMC,j, with the stochastic results derived from the SFDLBM
simulations, us,j,
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max -norm ¼max
x;y;j
jus;j � uMC;jj; ð26aÞ

q-norm ¼ 1
NX

X
x;y;j

us;j � uMC;j

�� ��q !1=q

; ð26bÞ
where N is the number of samples specified in the MC scheme, and X is the area of the computational domain. In the present
calculation, N = 1000 and X = 1. For each MC sample, indexed by j, there is a corresponding value for f0. The stochastic solu-
tion us,j is obtained by putting the corresponding f0 into the SFDLBM solution, u(x, y, f0). In Figs. 6–8, u, v, and p are plotted
against f0 at the center of the cavity (x = 0.5, y = 0.5). The symbol ‘�’ is the MC result calculated using 1000 samples. It is seen
that the higher the order of HC employed, the better the agreement is when compared with the MC results.
4. Validation case II – more than one random excitation

In this section, cases with more than one independent random excitation are considered. The number of random excita-
tions is represented by the dimension of the Gaussian random variable f, which is denoted as D in Eq. (7). The case of D = 2
(two sources) is used as an illustrative example in this section. Calculation of higher dimension, i.e. more than two random
excitations, follows the same procedure. For illustration purposes, two examples, a driven cavity flow and a sudden expan-
sion flow, are presented below.

Fluid viscosity is still considered as one of the random excitations. The choice of a second random excitation needs some
consideration. In a stenosed artery, plaque and cholesterol buildup will lead to changes in the velocity of blood flow, which in
turn could contribute to a viscosity change. Therefore, a reasonable second choice of random excitations is the flow velocity.
This implies that, in the cavity flow problem, both the viscosity and the upper plate velocity are considered to have a random
excitation component, while in the sudden expansion flow problem the viscosity and the mean volume flow rate are as-
sumed to have a random excitation component.
4.1. Driven cavity flow with two random excitations

For this problem, in addition to l (i.e. Eq. (16)), it is also assumed that the velocity of the upper plate of the cavity is uncer-
tain and can be written as
U ¼ U0 þ f1U1; ð27Þ
(i.e., setting h0 = l and h1 = U in Eq. (6)) where f1 is a Gaussian random variable similar but independent of f0, sharing the
same definition of expectation as given in Eq. (7). For the present example, D = 2 and it can be verified that
hf1i ¼ 0; hf2

1i ¼ 1; hUi ¼ U0 and hðU � U0Þ2i ¼ U2
1. Exactly the same formulation as described in the previous section is em-

ployed. The pressure and velocity, which are projected to the HC, can be calculated by using the same procedure as detailed
in the previous section except that f is now a vector, f = (f0, f1) with components f0 and f1, instead of a scalar. The solution
therefore depends on both f0 and f1, i.e. p = p(x, y, f0, f1), u = u(x, y, f0, f1), and v = v(x, y, f0, f1). The results calculated by the
SFDLBM are compared with those obtained from the MC simulation scheme. The same numerical and physical parameters as
specified in the previous driven cavity flow case are used in the current simulations. Additional parameters that need to be
specified are: U0 = 1 and U1 = 0.25. The error norms between the SFDLBM and the MC results are given in Table 3. It is seen
that the error norm decreases with increasing order of the HC.
4.2. Sudden expansion flow with two random excitations

A channel with a symmetric sudden expansion gives rise to an internal separated flow. The flow geometry shown in Fig. 9
[9,29] has a parabolic profile prescribed at the entrance (x = 0)
ujx¼0 ¼
3q
2h

1� y
h

	 
2
� 

; 0 6 y 6 h ¼ 0; h 6 y 6 1; ð28Þ
where h is the half-width of the channel upstream of the expansion. In addition to the viscosity coefficient as given in Eq.
(16), the mean volume flow rate q is also considered to be an uncertainty parameter; it is defined as
q ¼ q0 þ f1q1; ð29Þ
(i.e., setting h0 = l and h1 = q in Eq. (6)). A computational domain bounded by 0 6 x 6 20, 0 6 y 6 1 (i.e. h = 0.5) is used. The
numerical and physical parameters are given by Dx = 0.05, Dt = 0.0001, Kc = 2.5, q0 = 1, q1 = 0.2, l0 = 1/(46.6) � 0.02146,
l1 = 0.005. This specification gives rise to a mean Reynolds number of Re = 46.6. The same settings as in Eq. (20) are used
for the outflow boundary condition. The error norms between the SFDLBM and the MC results are shown in Table 4. The re-
sults are not as good as the driven cavity flow case presented above; however, as expected, the error norm decreases as the
HC order increases.
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Fig. 9. Schematic diagram of the flow in a channel with a symmetric sudden expansion.

Table 4
Error norms of the sudden expansion flow with two random excitations.

Max-norm 2-norm 1-norm

us � uMC

Deterministic 2.0086477 0.2612888 0.1730731
Mp = 1 1.0292877 0.0314825 0.0134520
Mp = 2 0.7567994 0.0142168 0.0047911
Mp = 3 0.4963875 0.0065793 0.0021707
Mp = 4 0.2091024 0.0025238 0.0011193

vs � vMC

Deterministic 0.0983164 0.0054402 0.0027784
Mp = 1 0.0569045 0.0016440 7.4201e�4
Mp = 2 0.0283838 6.5860e�4 2.7004e�4
Mp = 3 0.0165518 3.5667e�4 1.4462e�4
Mp = 4 0.0084211 2.3328e�4 1.0251e�4

ps � pMC

Deterministic 2.2894731 0.3044806 0.1946382
Mp = 1 1.0149645 0.0943119 0.0529843
Mp = 2 0.9868502 0.0224071 0.0089726
Mp = 3 0.8154958 0.0163760 0.0036862
Mp = 4 0.4866599 0.0109501 0.0023807

Table 3
Error norms of the driven cavity flow with two random excitations.

Max-norm 2-norm 1-norm

us � uMC

Deterministic 0.2151781 0.0135681 0.0068239
Mp = 1 0.1909254 0.0086299 0.0042735
Mp = 2 0.1559440 0.0035074 0.0014738
Mp = 3 0.1129188 0.0019038 7.1737e�4
Mp = 4 0.0871112 0.0012729 4.7242e�4

vs � vMC

Deterministic 0.2219703 0.0103100 0.0049905
Mp = 1 0.1917158 0.0063802 0.0028770
Mp = 2 0.1334582 0.0028935 0.0012443
Mp = 3 0.1045993 0.0015324 5.5668e�4
Mp = 4 0.0750158 9.5193e�4 3.8284e�4

ps � pMC

Deterministic 1.0164630 0.0185207 0.0062602
Mp = 1 0.6209397 0.0074367 0.0032909
Mp = 2 0.0688347 0.0015633 7.8578e�4
Mp = 3 0.0819707 9.2195e�4 4.5828e�4
Mp = 4 0.0383901 6.1968e�4 3.6777e�4
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5. Validation case III – one random process

In previous sections, the viscosity coefficient, though uncertain, is treated as spatially uniform. However, this might not be
the case in the flow through stenosed arteries. As indicated in [25], the mean velocity varies rapidly across and along a
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constricted tube in the section where the constriction occurs. This rapid variation created by the geometry of the constriction
can be simulated and tracked through the addition of a body force term in the governing momentum equation [26]. The im-
mersed boundary method can also be incorporated into the SFDLBM through an additional distribution function in the mod-
eled lattice Boltzmann equation; this task will be carried out later. Since blood viscosity l is influenced by changing velocity,
pressure, and shear rate [20–22], it could be argued that l might vary substantially in the region where these changes occur.
Therefore, in the constricted section, l will not only be affected by the changing velocity, pressure, and shear rate, it might
also loss its spatially uniform property.

In order to account for this geometry effect on l, it can be treated as a random process with spatial variation given by
Fig. 10.
respect
lð~xÞ ¼ l0ð~xÞ þ l0ð~xÞ: ð30Þ
The formulation developed before is in fact also appropriate for the treatment of random process. In extending the SFDLBM
scheme to treat problems involving a random process, the approach of [17] is followed. The first term on the right hand side
of Eq. (30) is the expectation, i.e. hli= l0, and the second term is the random component given by an autocorrelation function
K, such that
Kð~x1;~x2Þ ¼ hl0ð~x1Þl0ð~x2Þi ¼ r2 exp � j
~x1 �~x2j

Lc

� �
: ð31Þ
It is assumed that Kð~x1;~x2Þ is a Gaussian process characterized by its variance r and its normalized correlation length Lc. This
means that for any two points~x1 and~x2, the viscosity coefficients measured are found to have a Gaussian relation as given in
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Eq. (31). The uncertainty is dependent on the independent variable,~x (the space), and this is the main difference between the
formulation given in this section and that presented in previous sections. The autocorrelation function can be expanded in
terms of its eigenvalues ki and eigenfunctions f 0i [14], such that
Fig. 11.
respect
Kð~x1;~x2Þ ¼
X1
i¼0

kif 0i ð~x1Þf 0i ð~x2Þ; ð32Þ
and l
0

is expressed accordingly in the usual Karhunen–Loève (KL) expansion [14]
l0ð~xÞ ¼
X1
i¼0

ffiffiffiffi
ki

p
f 0i ð~xÞfi; ð33Þ
where fi are uncorrelated Gaussian variables having zero expectation and unit variance. The eigenvalues ki and eigenfunc-
tions f 0i of Kð~x1;~x2Þ are the solutions of the corresponding integral operator [14]
Z 1

0
Kð~x1;~x2Þf 0ð~x2Þd~x2 ¼ kf 0ð~x1Þ: ð34Þ
This Fredholm equation can be solved numerically; however, for the kernel given in Eq. (31) and for the 1-D spatial case,
an analytical solution is available in [14]. This is given by
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f 0nðyÞ ¼

cos½xnðy�1=2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2þ

sinðxnÞ
2xn

p if n is even;

sin½xnðy�1=2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2�

sinðxn Þ
2xn

p if n is odd;

8><
>: and; ð35aÞ

kn ¼ r2 2Lc

1þ ðxnLcÞ2
; ð35bÞ
where xn are the positive roots of the characteristic equation
½1� Lcx tanðx=2Þ�½Lcxþ tanðx=2Þ� ¼ 0: ð36Þ
Since the first positive root of Eq. (36) is x0 = 0, and correspondingly f 00 ¼ 0, Eq. (30) can be expressed as
lðyÞ ¼ l0ðyÞ þ
XNKL

i¼1

ffiffiffiffi
ki

p
f 0i ðyÞfi; ð37Þ
where for numerical purpose, the series is truncated up to NKL only. As a result, matching the dimension of f to the order of
the KL expansion gives D = NKL. Eq. (37) is in fact a re-write of Eq. (6) with h00 = h01 = 0, h10 = l0, hi0 = 0, i > 1, and hi1, i P 1
being the coefficients of the KL series. The same formulation of the scheme as in the previous section can be employed.
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5.1. Driven cavity flow with viscosity as a random process

In order to verify the effectiveness of the application of the KL expansion in the SFDLBM, it is assumed that fluid viscosity
l of a driven cavity flow is a random process represented by Eq. (37) with the independent variable y replaced by r, where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 0:5Þ2

q
. This implies that the uncertainty is radially symmetric about the center of the cavity. Thus, the

expression given in Eq. (37) with y replaced by r represents a simple model of a random process for l. Such a model is chosen
because it permits a MC simulation to be carried out within the limited computer resource of the Department. Furthermore,
as a first attempt to verify the validity and extent of the SFDLBM with l being a random process, Eq. (37) with y replaced by r
affords simplicity to allow the stated objectives of the study to be accomplished. The numerical and physical parameters
specified are Dx = 0.02, Dt = 0.0001, Kc = 1,l0 = 0.01, r = 0.0025, Lc = 1,U = 1. Figs. 10–12 show the error norms of the velocity
and the pressure between the SFDLBM and the MC results, where 1000 samples are used in the MC simulation scheme. Sig-
nificant improvement is shown by increasing NKL. The error is smaller for larger Mp, but it seems to converge and almost
reach the correct result at Mp = 4. Therefore, NKL plays a more critical role for the accuracy when Mp is sufficiently high.

Besides the uncertain l, the speed of the upper plate of the cavity can also be considered to be uncertain. Since the index i
in Eq. (37) starts from 1, by defining the speed of the upper plate as
Fig. 13.
SFDLBM
U ¼ U0 þ f0U1; ð38Þ
(i.e., setting h00 = U0, h01 = U1, and again h10 = l0, hi0 = 0, i > 1, and hi1, i P 1 are the coefficients of the KL series in Eq. (6))
where f0 is a Gaussian variable having zero expectation and unit variance and uncorrelated to other fi for i P 1, a stochastic
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problem with l behaving like a random process and an uncertain speed for the upper plate can be formulated. In this sit-
uation, D = NKL+1. The problem can again be solved by specifying the same numerical and physical parameters as those given
in the previous cavity flow case, and with additional specifications for U0 = 1 and U1 = 0.25. The results of this simulation are
presented in Figs. 13–15; the error norm behavior is similar to those shown in Figs. 10–12. This example further demon-
strates the viability and versatility of the SFDLBM.

6. Computational time comparison between MC and SFDLBM

Having demonstrated the viability of the SFDLBM, the next task is to assess computational economy of the SFDLBM com-
pared to the MC simulation scheme. All SFDLBM and MC simulations are carried out in the same IBM server in the Depart-
ment. In most cases attempted, the computational time for the SFDLBM is much smaller than that for the MC simulation.
Table 5 reports the computer running time of the driven cavity flow and the sudden expansion flow with two random exci-
tations. The time step (Dt) of the MC and the SFDLBM calculations are the same. For the cases of Mp = 4, the SFDLBM is faster
than the MC method for the driven cavity flow and the sudden expansion flow cases with two random excitations, by at least
20 times and 8 times, respectively. The very significant difference in computational time between the MC calculation and the
SFDLBM simulation is clearly shown. Only the computer running time of the cases with two random excitations are pre-
sented because all other cases show similar trend. It should be noted that although the system in the SFDLBM is increased
by M times when compares to its deterministic counterpart (see Eq. (9)), it is observed that the computational time for the
SFDLBM is not simply M times that of a single deterministic case. It is because the calculation of the summation in Eqs. (11–
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Table 5
Computer running time for the driven cavity flow and the sudden expansion flow with two random excitations.

MC scheme Running time (h)

Driven cavity flow Sudden expansion flow
133 327.5

SFDLBM scheme
Mp = 4 M = 15 6 40.5
Mp = 3 M = 10 2.5 17
Mp = 2 M = 6 1 5.5
Mp = 1 M = 3 0.5 3
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13) required additional time, and the additional time increases nonlinearly with M. This nonlinear behavior of computational
time with M can be observed in Table 5.

In a random process, when NKL = Mp = 4, and M = 70, it is found that the computational time for the SFDLBM becomes
comparable to the calculation of the MC scheme with 1000 samples. It should be noted that the computational time for
the MC scheme with 1000 samples is not just 1000 times that of calculating one sample because during a calculation, an
initial condition is required for iteration until steady state is achieved. If vanishing velocity (u = v = 0) is used as an initial
condition, the number of iteration for steady state to achieve is about two hundred thousand (�200,000) for both deter-
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ministic and stochastic simulations. In the present MC calculation, except for the first sample, which uses the vanishing
velocity as an initial condition, the solution of the previous sample is used as an initial condition for the next sample
calculation and this shortens the iteration process. These are the reasons why when M = 70, the computational time
for the SFDLBM is found to be comparable to the calculation of the MC scheme with 1000 samples. However, it is
not unusual for the number of samples used for the MC scheme to be over 1000. Also, the iteration time for the SFDLBM
can be shortened by improving the initial guess. In most applications to solve stochastic problems, the SFDLBM still pro-
vides a much faster solution than the MC scheme. Further savings in computing time can be achieved by adapting the
SFDLBM to parallel computing [4,5].
7. Conclusions

A stochastic numerical solver for steady incompressible NS equations has been developed by integrating the FDLBM with
either the SSFEM or the SPM. Thus formulated, the algorithm is designated as SFDLBM. The numerical procedure of the
FDLBM given in [9] and the dependent variables are projected to the Homogeneous Chaos (HC) by the expansion of the Poly-
nomial Chaos (PC). Therefore, all advantages of the FDLBM are retained. Validation against MC solutions of channel/Couette
flow, driven cavity flow, and sudden expansion flow are carried out. In these test cases, if only one source of random exci-
tation is analyzed, the viscosity is taken to be that source. If two sources are considered, the viscosity and the velocity (or
mean flow rate) are assumed to have a random component. In addition, a flow where the fluid viscosity l is a random pro-
cess is also simulated. Only a small number of terms in the PC expansion are required to ensure an accurate representation of
the calculated flow field in all test cases examined. The computational resource required for the SFDLBM is found to be much
reduced compared to the MC scheme.

The objective of developing the SFDLBM is to use it to simulate blood flow in micro and stenosed arteries. The complex
geometry of a stenosed artery can be handled by implementing the immersed boundary (IB) method of Peskin [26] into the
SFDLBM. Once successful, a SFDLBM numerical technique that can handle blood flow simulation in stenosed arteries is avail-
Table A.1
One-dimensional (D = 1) polynomial chaos and their variances [14].

j Order of the homogeneous chaos, Mp jth polynomial chaos, Wj Variance, hW2
j i

0 Mp = 0 Wj = 1 hW2
j i ¼ 1

1 Mp = 1 Wj = n1 hW2
j i ¼ 1

2 Mp = 2 Wj ¼ n2
1 � 1 hW2

j i ¼ 2
3 Mp = 3 Wj ¼ n3

1 � 3n1 hW2
j i ¼ 6

4 Mp = 4 Wj ¼ n4
1 � 6n2

1 þ 3 hW2
j i ¼ 24

5 Mp = 5 Wj ¼ n5
1 � 10n3

1 þ 15n1 hW2
j i ¼ 120

6 Mp = 6 Wj ¼ n6
1 � 1n4

1 þ 45n2
1 � 15 hW2

j i ¼ 720

Table A.2
Two-dimensional (D = 2) polynomial chaos and their variances [14].

j Order of the homogeneous chaos, Mp jth Polynomial chaos, Wj Variance, hW2
j i

0 Mp = 0 Wj = 1 hW2
j i ¼ 1

1 Mp = 1 Wj = n1 hW2
j i ¼ 1

2 Wj = n2 hW2
j i ¼ 1

3 Mp = 2 Wj ¼ n2
1 � 1 hW2

j i ¼ 2
4 Wj = n1n2 hW2

j i ¼ 1
5 Wj ¼ n2

2 � 1 hW2
j i ¼ 2

6 Mp = 3 Wj ¼ n3
1 � 3n1 hW2

j i ¼ 6
7 Wj ¼ n2

1n2 � n2 hW2
j i ¼ 2

8 Wj ¼ n2
2n1 � n1 hW2

j i ¼ 2
9 Wj ¼ n3

2 � 3n2 hW2
j i ¼ 6

10 Mp = 4 Wj ¼ n4
1 � 6n2

1 þ 3 hW2
j i ¼ 24

11 Wj ¼ n3
1n2 � 3n1n2 hW2

j i ¼ 6
12 Wj ¼ n2

1n2
2 � n2

1 � n2
2 þ 1 hW2

j i ¼ 4
13 Wj ¼ n3

2n1 � 3n2n1 hW2
j i ¼ 6

14 Wj ¼ n4
2 � 6n2

2 þ 3 hW2
j i ¼ 24
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able. The present work demonstrates that a viable SFDLBM capable of handling a random process has been developed; there-
fore, it represents the first step towards the construction of a SFDLBM with IB capability.
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Appendix A. 1-D and 2-D polynomial chaoses

See Tables A.1 and A.2.
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